The fluxes through glycolytic enzymes in Saccharomyces cerevisiae are predominantly regulated at posttranscriptional levels.
نویسندگان
چکیده
Metabolic fluxes may be regulated "hierarchically," e.g., by changes of gene expression that adjust enzyme capacities (V(max)) and/or "metabolically" by interactions of enzymes with substrates, products, or allosteric effectors. In the present study, a method is developed to dissect the hierarchical regulation into contributions by transcription, translation, protein degradation, and posttranslational modification. The method was applied to the regulation of fluxes through individual glycolytic enzymes when the yeast Saccharomyces cerevisiae was confronted with the absence of oxygen and the presence of benzoic acid depleting its ATP. Metabolic regulation largely contributed to the approximately 10-fold change in flux through the glycolytic enzymes. This contribution varied from 50 to 80%, depending on the glycolytic step and the cultivation condition tested. Within the 50-20% hierarchical regulation of fluxes, transcription played a minor role, whereas regulation of protein synthesis or degradation was the most important. These also contributed to 75-100% of the regulation of protein levels.
منابع مشابه
Investigation of blood serum enzymes and antioxidant system of liver in grey mullet ,Mugil cephalus Linnaeus 1758, fed with different levels of Saccharomyces cerevisiae yeast
The potential use of dietary probiotics to enhance the immunity and health of aquatic animals has recently attracted intensive attention. The purpose of this study was to investigate the effect of different levels of Saccharomyces cerevisiae yeast on blood serum enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)) and antioxidant systems (S...
متن کاملDynamics of glycolytic regulation during adaptation of Saccharomyces cerevisiae to fermentative metabolism.
The ability of baker's yeast (Saccharomyces cerevisiae) to rapidly increase its glycolytic flux upon a switch from respiratory to fermentative sugar metabolism is an important characteristic for many of its multiple industrial applications. An increased glycolytic flux can be achieved by an increase in the glycolytic enzyme capacities (V(max)) and/or by changes in the concentrations of low-mole...
متن کاملEvidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species
The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurr...
متن کاملInitiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae
In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...
متن کاملIncreasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as "overflow metabolism" or "the Crabtree effect." The yeast Saccharomyces cerevisiae has served as an important model organism for studyin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 40 شماره
صفحات -
تاریخ انتشار 2007